[Proof] Quadratic Formula

Math
Published

January 7, 2025

\begin{align*} &ax^2+bx+c=0 \ (a \neq 0) \\ &x^2+\frac{b}{a}x+\frac{c}{a}=0\\&(x+\frac{b}{2a})^2=-\frac{c}{a}+\frac{b^2}{4a^2}\\ &(x+\frac{b}{2a})^2=\frac{-4ac+b^2}{4a^2}\\ &x+\frac{b}{2a}=\pm\sqrt{\frac{b^2-4ac}{4a^2}}\\ &x=\pm\sqrt{\frac{b^2-4ac}{4a^2}}-\frac{b}{2a}\\ &x=\pm\frac{\sqrt{b^2-4ac}}{2a}-\frac{b}{2a}\\ &x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} \end{align*}

Therefore,